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This image analysis project has 
constructed a tool for performing 

computer-assisted detection of small 
voids in CT data sets of metal compo-
nents. We fi rst constructed algorithms 
using known approaches and measured 
their performance on a test object, 
described below. Noise reduction and 
void detection algorithms based on 
mathematical morphology demonstrated 
good performance on the test object and 
excellent performance on a small but 
diverse collection of programmatic data 
sets that had been previously analyzed 
manually. Implementation issues, such 
as handling large data sets and auto-
mated parameter selection, have been 
explicitly addressed in the course of 
working with these data. The result is a 
standalone C++ application, delivered 
to the enhanced surveillance program 
that directs a tomography analyst’s 
attention to candidate void regions in 
large data sets.

Project Goals
The enhanced surveillance program 

will produce CT data sets that are up to 
several thousand voxels on a side 
(i.e., 8000 x 8000 x 8000). The current 
method of analysis requires a tomogra-
pher to view sequences of several thou-
sand images, where each image occupies 
several computer screens at full resolu-
tion. One of the primary objectives is to 
identify voids of any size. The work of 
searching for voids at the resolution lim-
it of the system is extremely demanding 
and tedious in these data sets. The goal 
of this project is to create a tool that will 
reduce these data sets to a ranked set of 
candidate voids that can be quickly vali-
dated or rejected by the tomographer; 
the broader goal is to strengthen the 
dialog and technical exchange between 
tomography and image analysis experts 
so that emerging image analysis issues 
can be effectively addressed.

The enhanced surveillance program 
uses a tungsten ring with holes drilled 
into it (Fig. 1) to study the ability of their 
systems and analysts to detect small voids 

in metal parts. Of the 13 holes in this 
ring, 9 (ranging from 305 to over 1000 
mm in diameter) are well resolved by the 
CT system and are readily discernible in 
the processed CT data (the remaining 4 
are less than 300 mm in diameter). One 
key success metric is that our algorithm 
must place these 9 voids at the top of our 
ranked list of candidate voids.

Relevance to LLNL Mission
This project has produced a tool that 

will increase the effi ciency of enhanced 
surveillance program tomography 
analysts by focusing their attention on 
suspect voids in a given data set, thereby 
allowing them to forego an exhaustive 
search of many thousands of screens of 
largely defect-free data. This tool could 
also make these data sets more acces-
sible to other technical staff, who may 
not be tomography experts, by perform-
ing necessary preprocessing and quickly 
guiding them to regions with suspect 
voids. This application should be gener-
ally applicable to the detection of small 
defects (i.e., voids and inclusions) in 
homogeneous media. 

FY2007 Accomplishments and Results
We accomplished four interrelated 

tasks in FY2007: 1) algorithm testing 
and refi nement using programmatic data 
sets; 2) automated parameter selection; 
3) implementation in C++; and 4) iden-
tifi cation of issues that warrant future 
work. We have delivered a standalone 
C++ application that effectively fo-
cuses an analyst’s attention on localized 
anomalies in large grayscale 3-D CT 
data sets.

In the course of testing with these 
data sets, we have refi ned the way 
that we calculate ranking metrics for 
candidate voids, using, for example, a 
contrast calculation that handles region 
boundaries (Fig. 2). Our revised volume-
weighted contrast ranking performs well 
on the tungsten ring defects (9 detected 

Figure 1. Tungsten ring test 
object, a cylinder with 13 holes 
drilled into its inner surface.  This 
cutaway sketch shows the hole 
locations, while the table lists their 
sizes. Note that in the images used 
for this work, holes #4 through 
#7 are very diffi cult to impossible 
to detect manually. They are not 
found by our algorithms. 
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holes ranked in order of decreasing size, 
with the most conspicuous false alarm 
ranked number 10 (Fig. 3)). 

We have implemented a minimum 
entropy approach to calculating the 
void detection threshold parameter, and 
also a second threshold to yield a more 
complete void reconstruction (Fig. 4). 
We have also achieved a 4x speedup, as 
well as portability and improved data 
and memory management, with our op-
timized C++ implementation leveraging 
published methods.
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Figure 2. Three candidate defects ranked 1, 6 and 11 by the detection code.  For each defect we display (from left to 
right): x-y, x-z and y-z views; defect voxel intensity histogram; and immediate background voxel intensity histogram.  
Defects 1 and 6 are true positives, (corresponding to holes #2 and #11 from Fig. 1, respectively) that occur on a region 
boundary.  Their background histograms are bi-modal, with the relevant background intensity captured by the primary 
mode (defi ned by the vertical red lines that are generated automatically).  Using this primary mode in the contrast 
calculation improves the ranking metric. The size of the W ring CT data set is 1908 x 1908 x 56.  The thumbnails shown 
are all 64 voxels on a side, displayed at full resolution.

FY2008 Proposed Work
We have identifi ed ideas for future 

work that may lead to enhanced 
detection sensitivity and false 
alarm rejection by performing more 
sophisticated true and false positive 
characterization (e.g., classifi cation 
techniques operating on shape, 
density, texture, and other features 
in both the candidate defect and 
surrounding background regions).  Figure 4. Plot of measured tungsten (brown line) defect volumes vs. design (green dashed line) volumes. Measured 

volumes were calculated using “double-threshold” morphological reconstruction.

Figure 3. The top 10 ranked tungsten ring candidate defects (in 10 columns above) produced by our application. Rank 
proceeds from left to right, with x-y, x-z and y-z views (top to bottom) shown for each candidate.
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